Application of SVM-RFE on EEG signals for detecting the most relevant scalp regions linked to affective valence processing
نویسندگان
چکیده
In this work, event related potentials (ERPs) induced by visual stimuli categorized with different value of affective valence are studied. EEG signals are recorded during visualization of selected pictures belonging to International Affective Picture System (IAPS). A Morlet wavelet filter is used to transform the EEG input space to a topography-time–frequency feature space. Support vector machine-recursive feature elimination (SVM-RFE) is applied for detecting scalp spectral dynamics of interest (SSDOIs) in this feature space, allowing to identify the most relevant time intervals, frequency bands and EEG channels. This feature selection method has proven to outperform the classical t-test in the discrimination of brain cortex regions involved in affective valence processing. Furthermore, the presented combination of feature extraction and selection techniques can be applied as an alternative in other different clinical
منابع مشابه
Approach on affective valence detection from EEG signals based on global field power measure and SVM-RFE algorithm
EEG signals have attracted the interest of scientific community for understanding how brain processes emotions. In order to extract objective conclusions, automatized methods that are able to reinforce the subjective visual explorations of the signals are desirable. In this work, a feature extraction + wrapped classification scheme is proposed for analysing how brain reacts to visual high/low v...
متن کاملطراحی و ساخت یک سیستم تشخیص خواب آلودگی راننده مبتنی بر پردازشگر سیگنال TMS320C5509A
Every year, many people lose their lives in road traffic accidents while driving vehicles throughout the world. Providing secure driving conditions highly reduces road traffic accidents and their associated death rates. Fatigue and drowsiness are two major causes of death in these accidents; therefore, early detection of driver drowsiness can greatly reduce such accidents. Results of NTSB inves...
متن کاملحوزه های مختلف کاربردی پردازش سیگنال مغزی در ایران
According to the researches, it turns out that human's activities are the results of the internal-neural activities of their brain. The reflection of such activities which are propagated throughout the scalp can then be acquired and processed. In this regard, brain signals can be acquired and recorded by EEG (Electroencephalography). Researchers have applied different technqiues for acquiring, ...
متن کاملA hybrid EEG-based emotion recognition approach using Wavelet Convolutional Neural Networks (WCNN) and support vector machine
Nowadays, deep learning and convolutional neural networks (CNNs) have become widespread tools in many biomedical engineering studies. CNN is an end-to-end tool which makes processing procedure integrated, but in some situations, this processing tool requires to be fused with machine learning methods to be more accurate. In this paper, a hybrid approach based on deep features extracted from Wave...
متن کاملClassification of EEG Signals for Discrimination of Two Imagined Words
In this study, a Brain-Computer Interface (BCI) in Silent-Talk application was implemented. The goal was an electroencephalograph (EEG) classifier for three different classes including two imagined words (Man and Red) and the silence. During the experiment, subjects were requested to silently repeat one of the two words or do nothing in a pre-selected random order. EEG signals were recorded by ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Expert Syst. Appl.
دوره 40 شماره
صفحات -
تاریخ انتشار 2013